
Introduction to Game 
Development in Unity

Iftekharul Islam



Outline

▪ Introduction to Unity

▪ Setting up the Game

▪ Moving the Player

▪ Moving the Camera

▪ Detecting Collisions

2

▪ Creating Obstacles

▪ Adding Win/Lose Condition

▪ Display Text

▪ Building the Game



Section

Introduction to Unity

3



Unity

▪ Unity is a cross-platform game 
development system.

▪ Unity features a complete toolkit for 
designing and building games.

▪ In this lecture, we will present the 
basic elements of Unity. 

▪ A good starting point to learn Unity: 
https://learn.unity.com/

4

https://learn.unity.com/
https://learn.unity.com/
https://learn.unity.com/
https://learn.unity.com/
https://learn.unity.com/
https://learn.unity.com/
https://learn.unity.com/


The Game

5



Download and Installation

▪ Download: https://unity.com/download

▪ Installation tutorial: https://www.youtube.com/watch?v=ewiw2tcfen8

▪ We will be using Unity 2022.3.19f1 for the lecture.

6

https://unity.com/download
https://unity.com/download
https://unity.com/download
https://unity.com/download
https://unity.com/download
https://www.youtube.com/watch?v=ewiw2tcfen8
https://www.youtube.com/watch?v=ewiw2tcfen8
https://www.youtube.com/watch?v=ewiw2tcfen8
https://www.youtube.com/watch?v=ewiw2tcfen8
https://www.youtube.com/watch?v=ewiw2tcfen8
https://www.youtube.com/watch?v=ewiw2tcfen8
https://www.youtube.com/watch?v=ewiw2tcfen8
https://www.youtube.com/watch?v=ewiw2tcfen8
https://www.youtube.com/watch?v=ewiw2tcfen8
https://www.youtube.com/watch?v=ewiw2tcfen8


Section

Setting up the Game

7



Create a new Unity project

▪ Select a project template.

• Open Unity Hub and log in using your Unity account.

• Select New Project.

• Select the 3D template and then select Download template if it is not already downloaded.

▪ Create the new project.

• In the Project Settings, enter “Dodge” in the Project Name box, select the Location box, and 

select a local folder of your choice.

• Select Create Project and wait for the Unity Editor to open.

 

8



Create a new Unity project

9



Overview of the Unity IDE

10

• Scene/game view
• Build/play scene

• Hierarchy
• Manage game objects 

• Inspector
• Manage components

• Project window
• Manage assets



Create a new Scene

▪ Set up your workspace.

• Make sure the Default Layout is selected from the Layout dropdown for tutorial consistency. 

▪ Create a new scene from a template.

• To create a new scene, select File > New Scene.

• Select the Basic (Built-in) template, then select Create. 

11



Create a new Scene

12



Create a new Scene

▪ Save the scene.

• Select File > Save As.

• Name the scene "MiniGame". 

• Save the scene in a new folder named “Scenes”.

13



Create a primitive plane

▪ Create a Plane 

GameObject.

• From the main menu, select 

GameObject > 3D Object > 

Plane. 

• Alternatively, in the 

Hierarchy window, select 

the Add menu (+) > 3D 

Object > Plane.

• At the top of the Inspector 

window, rename the newly 

created Plane GameObject 

"Ground". 

14



Create a primitive plane

▪ Reset the position of the 

Plane.

• With the Ground 

GameObject selected, in 

the upper-right corner of the 

Transform component, 

select the vertical More (⋮) 

menu .

• Select Reset for the 

Transform component of 

the Ground GameObject. 

This action places the 

GameObject at the origin 

point (0, 0, 0) in the scene. 

15



Create a primitive plane

▪ Frame the Plane in the Scene view.

• Ensure the Ground GameObject is selected and position the cursor in the Scene view.

• Press the F key to frame the entire GameObject nicely within the Scene view. 

• Alternatively, select Edit > Frame Selected from the main menu.

16



Scale the Ground Plane

▪ Increase the scale of the Ground Plane.

• With the Ground GameObject selected, activate the Scale tool by pressing the R hotkey.

• We can drag the X (red) and Z (blue) handles to increase the size of the Plane. 

▪ Set precise scale values

• In the Transform component, set the X and Z Scale values to 3 and 5000 respectively.

17



Scale the Ground Plane

18



Create a Player GameObject

▪ Create a Player cube.

• In the Hierarchy window, right-click > 3D Object > Cube.

• Rename the newly created Cube GameObject "Player". 

▪ Position the Player Sphere at the origin.

• In the Inspector window, reset the Transform component of the Player GameObject to 

position it at the origin point (0, 0, 0) of the scene.

• Press the F key in the Scene view to frame the Player GameObject in the Scene view. 

▪ Move the Player GameObject up to sit on the Plane.

• In the Transform component for the Player GameObject, set the Y Position value to 0.5.

19



Create a Player GameObject

20



Add colors with Materials

▪ Create a new Materials folder.

• In the Project window, right-click > Create > Folder to make a new folder.

• Rename the new folder "Materials". 

21



Add colors with Materials

22



Add colors with Materials

23



Add colors with Materials

▪ Create a new Background material.

• In the newly created Materials folder, right-click > Create > Material to make a new material, 

then name it "Ground".

• In the Inspector window, use the foldout (triangle) to expand the Surface Inputs module, and 

select the Base Map color picker.

• Change the color to a pale gray with RGB values of 130, 130, and 130.

• Make sure the Metallic Map is set to 0 and the Smoothness is set to around 0.25 for a matte 

finish.

• Apply the Ground material to the Ground GameObject by dragging it from the Project window 

onto the Ground GameObject in the Scene view. 

24



Add colors with Materials

25



Add colors with Materials

26



Add colors with Materials

27



Add colors with Materials

▪ Creating a new Player Material.

• In the Materials folder, create a new material and name it "Player".

• In the Inspector window, adjust the Base Map color for the Player material — set the RGB 

values to 255, 65, and 65 for a matte red.

• Set the Metallic Map to 0 and change the Smoothness to 0.75 for a shiny finish.

• Apply the Player material to the Player GameObject by dragging it onto the sphere in the 

Scene view. 

28



Add colors with Materials

29



Add colors with Materials

▪ Dock the Game View to the right of Scene View.

• Left click and hold the game view tab. Move it to the right of the Scene view so that we can see 

both tabs side by side.

30



Add colors with Materials

31



Add colors with Materials

▪ Change the skybox.

• In the Hierarchy window, select the Main Camera.

• In the Inspector tab, change the skybox of the Camera component to Solid Color. set the 

RGB values of Background to 0, 220, and 255 for a light blue.

32



Add colors with Materials

33



Section

Moving the Player

34



Moving the Player

▪ (Note: Make sure the play button is unclicked. Otherwise, all the changes we make 
will be lost.)

35



Add a Rigidbody to the Player

▪ Add a Rigidbody component. 

• Select the Player GameObject in the Hierarchy window.

• In the Inspector Window, select Add Component, then search for "Rigidbody" and add the 

Rigidbody component to the Player GameObject.

• Note: Make sure to select Rigidbody and not Rigidbody 2D.

36



Add a Rigidbody to the Player

37



Create a new script

▪ Create a new PlayerMovement script.

• In the Project window, create a new folder named "Scripts".

• With the Player GameObject selected, select Add Component > New Script, then name the 

new script "PlayerMovement".

• The created script asset will be at the root level of the Assets folder by default. Move the new 

PlayerMovement script asset into the Scripts folder. 

38



Create a new script

39



Create a new script

▪ Open the script in a script editor.

• Double-click the script asset in the Project window to open it in your preferred script editor, 

usually VS Code.

• Start() and Update() Functions: These are special functions within a script that Unity calls 

automatically during the game's lifecycle.

o Start() is called only once when the object is first created or enabled in the scene.

o Update() is called repeatedly every frame, making it ideal for continuously updating the 

object's behavior throughout the game.

40



Assign a new Rigidbody variable

• Above the Start function, add the following line of code to declare a new variable and 

save the script (Ctrl + S): 

public Rigidbody rb; 

• Next, go to the Unity Editor. After the script gets compiled, you can see that the Player 

Movement component of the Player object has a Rb field added to it.

41



Assign a new Rigidbody variable

42



Referencing the Player’s Rigidbody

• Click on the small round button on the right side of the Rb field and select Player from 

the list (or you can drag the Player object from the Hierarchy panel to the Rb field). 

• This creates a reference to the Rigidbody component of the Player object from the rb 

variable in our PlayerMovement script. 

• This allows us to use the rb variable to modify the Rigidbody of the Player.

43



Assign a new Rigidbody variable

44



Apply force to the Player

▪ In our game, we want the player to move forward automatically and move the left or to 
the right when we press the left or right button on our keyboard respectively.

45



Apply force to the Player

▪ Physics Control: Let's explore some key properties and methods of the Rigidbody 

component:

• useGravity: Enable or disable gravity for the object.

• AddForce: Apply a force to the object, causing it to move in a specific direction.

• Time.deltaTime: This value is used to ensure your force calculations are frame-rate 

independent, leading to smoother and more consistent physics behavior across different 

machines.

46



Apply force to the Player

▪ Add the following lines below public Rigidbody rb;:
public float forwardForce = 1000f;

public float sidewaysForce = 100f;

▪ (Note: We can change the values of these variables in the Unity editor later if needed.)

▪ We will not need the Start() function here. So we can remove it.

▪ In the Update function body, add the following code: 

rb.AddForce(0f, 0f, forwardForce * Time.deltaTime);

47

represent the force applied in the x, y and z directions respectively



Apply force to the Player

▪ If we now go to the Unity editor and click the play button, we will see the player moving 

forward.

▪ Make sure to unclick the play button afterward.

48



Apply force to the Player

49



Apply force to the Player

▪ To address the uncontrolled spinning or rotating of the player object, follow these steps:

1. Create a Slippery Physic Material:

➢ In the Project panel, make sure you are in the Asset folder

➢ Right-click in the Project panel and choose "Create" > "Physic Material".

➢ Name it “Slippery" and set both dynamic and static friction values to 0.

2. Apply the Material to the Ground:

➢ Select the ground object in the Scene view.

➢ Drag and drop the “Slippery" material onto the ground object.

➢ This reduces friction between the player and the ground, allowing for smoother movement 

and preventing uncontrolled spinning.

50



Apply force to the Player

51



Add sideways movement

▪ To incorporate sideways movement to our player, add the following code segment in the 

Update function:

52



Add sideways movement

▪ To add sideways movement to our player, we've introduced a new variable 

sidewaysForce with a value of 100f, which determines the strength of the sideways force.

▪ In the Update() function, we've added conditions to check if the 'right' or 'left' arrow 

keys are pressed. If the 'right' arrow key is pressed, we apply a force to the right using 

rb.AddForce(sidewaysForce * Time.deltaTime, 0f, 0f, ForceMode.VelocityChange);. 

Similarly, if the 'left' arrow key is pressed, we apply a force to the left using rb.AddForce(-

sidewaysForce * Time.deltaTime, 0f, 0f, ForceMode.VelocityChange);.

53



Add sideways movement

▪ Here's what's happening in these lines:

• Input.GetKey("right") and Input.GetKey("left") check if the 'right' or 'left' arrow keys are 

being pressed.

• rb.AddForce() applies a force to the player object.

• sidewaysForce * Time.deltaTime determines the strength of the sideways force applied.

• The 0f, 0f values in the AddForce() method mean there's no force applied in the vertical or 

forward/backward direction, ensuring the movement remains purely sideways.

• ForceMode.VelocityChange ensures that the force is applied instantly, allowing for immediate 

movement in response to key presses."

54



Add sideways movement

55



Add sideways movement

▪ The forwardForce looks to be slow when we hit the play button. Let’s change it to 4000. 

▪ Also set the drag value to 1 from 0 in the Rigidbody component of the Player. This adds 

air resistance and make the player’s movement smoother.

56



Add sideways movement

57



Section

Moving the Camera

58



Making the Camera follow the Player

▪ Approach 1: Attach camera as child of the player object.

• Drawback: Whenever the player rotates, the camera will also rotate, potentially causing a 

disorienting experience for the user.

▪ Approach 2: Script for camera follow

• Drawback: Whenever the player rotates, the camera will also rotate, potentially causing a 

disorienting experience for the user.

59



Making the Camera follow the Player

▪ Create the CameraMovement script.

• With the Main Camera GameObject selected in the Hierarchy window, select Add 

Component > New script in the Inspector window. 

• Name your new script “CameraMovement”.

• In the Project window, move the script from the root Assets folder into the Scripts folder. 

• Open the new script for editing. 

▪ Declare player and offset variables.

• Inside the first curly brace, add the following lines of code to declare two new variables: 

public Transform player;

Public Vector3 offset;

60



Making the Camera follow the Player

▪ Set the camera position in Update.

• In the Update function, inside the first curly brace, add the following line of code: 

transform.position = player.transform.position + offset; 

▪ Assign the Player GameObject variable in the Inspector window and Set the offset 

value.

• Make sure you have saved the CameraMovement script, then return to Unity.

• Drag the Player GameObject from the Hierarchy window into the Player slot in the 

CameraController component. 

• For the offset, Set X = 0, Y = 2 and Z = -8.

61



Making the Camera follow the Player

62



Section

Creating Obstacles and Detecting Collisions

63



Creating an Obstacle

▪ Create an Obstacle: Create a new cube object in the scene to represent an obstacle the 

player can collide with.

• (Select the main camera and set its Y position = 3 to get a better view in the Game View.)

• Reset obstacle’s position in the (Transform Component in the Inspector tab).

• Then set its Y position = 0.5 and Z position = 35.

▪ Obstacle Properties: Customize the obstacle's appearance by adjusting its color (R = 

60, G = 60, B = 60), smoothness (= 0.75, optional), and size (Scale → X = 3).

▪ Adding Rigidbody and Mass: Attach a Rigidbody component to the obstacle. Adjust 

the obstacle's mass to influence its behavior during collisions. A higher mass (such as 2) 

will make the obstacle less movable upon impact with the player.

64



Creating an Obstacle

65



Detecting Collision

▪ Scripting Collisions (Separate Script)

• While collision detection can be implemented in the player movement script, it's often cleaner to 

create a dedicated script for better organization.

• Select the Player object and add a new script to it named PlayerInteraction.

• Place PlayerInteraction.cs in the Scripts folder.

66



Detecting Collision

67



OnCollisionEnter Function

▪ Unity provides built-in functions for handling collisions. Its basic structure is as follow:

▪ The OnCollisionEnter() function gets called whenever the player object collides with 

another object in the scene.

▪ We can use Debug.Log statements within this function to verify collision detection. 

Initially, this might show a collision with the ground since it is a game object as well.

68

Refers to the object with which 
the player collided/came into 
contact.



OnCollisionEnter Function

▪ We can use Debug.Log statements within this function to verify collision detection. 
Initially, this might show a collision with the ground since it is a game object as well.

▪ In the PlayerInteraction.cs script:

• Remove the Start function (We won’t need it here).

• Within the first curly braces, add the following code segment (above Update fucntion).

▪ Head back to Unity and click the play button. Select the console tab on the lower portion 
of the editor.

▪ We will see that the message “Player hit something!” is displayed. The message gets 
displayed twice, one for the ground (which we don’t want for the game) and the other 
one for the obstacle.

69



OnCollisionEnter Function

70



Identifying Colliding Objects 

▪ In our game, we need to detect when the player collides with obstacles. This allows us to 

respond accordingly, such as halting player movement upon collision.

▪ While using the collider's name for identification can be a starting point, it's not a reliable 

approach for complex games.

• Names can be easily duplicated or forgotten, leading to potential issues.

▪ Tags provide a more robust way to identify objects in Unity.

• Assign a unique tag to the obstacle object (e.g., “obstacle").

71



Identifying Colliding Objects 

▪ Create a new tag.

• Select the Obstacle object in the Hierarchy panel.

• At the top of the Inspector window, from the Tag 

dropdown menu, select Add Tag. 

• Select the Add (+) button to add a new tag, then 

name it “obstacle”. 

• Important: This is case sensitive, so be careful — 

it needs to be exactly the same spelling and 

capitalization that you use in the script later on. 

▪ Apply the tag to the Obstacle object.

• With the Obstacle object still selected, use the 

Tag dropdown menu to select the new “obstacle” 

tag from the list. 

72



Identifying Colliding Objects 

73



Stopping Player Movement on Collision

▪ Using other.gameObject.CompareTag

• Within OnCollisionEnter(), we'll use other.gameObject.CompareTag("obstacle") to check if the collided 

object is tagged as an 'obstacle’.

▪ To disable player movement upon collision with an obstacle:

• Inside PlayerInteraction.cs, declare a public variable of type PlayerMovement named 

'movement’ within the first curly braces.

public PlayerMovement movement;

• Replace the code within OnCollisionEnter function. Changed OnCollisionEnter looks like 

this:

74



Stopping Player Movement on Collision

▪ Save the script.

▪ Go back to Unity editor. 

▪ Finally, in the unity editor, drag the Player object from Hierarchy panel to the movement 

field of the Player Interaction component of the Player object. 

▪ Click the play button and check the console panel to verify that the “Player hit an 

obstacle!” is displayed when the Player collides with the obstacle. 

▪ (Make sure to unclick the play button afterwards.)

75



Stopping Player Movement on Collision

76



Prefabs: Creating More Obstacle Objects

▪ Prefabs are reusable game object templates

▪ Turn the Obstacle GameObject into a prefab. 

• In the Assets folder, right-click > Create > Folder, then rename this new folder “Prefabs”. 

• Drag the Obstacle GameObject from the Hierarchy window into the Prefabs folder.

• If prompted, select Original Prefab.

▪ Enter and exit prefab editing mode.

• Select the arrow to the right of the Obstacle GameObject in the Hierarchy window to open 

prefab editing mode. 

• To return to the normal Scene view, select the back arrow at the top of the Hierarchy window.

77



Prefabs: Creating More Obstacle Objects

78



Prefabs: Creating More Obstacle Objects

▪ Make an empty parent GameObject for the Obstacle GameObjects.

• In the Hierarchy window, create a new empty GameObject and name it “Obstacle Parent”.

• Reset the Transform component. 

• In the Hierarchy window, drag the Obstacle GameObject onto the Obstacle Parent 

GameObject. 

79



Prefabs: Creating More Obstacle Objects

80



Prefabs: Creating More Obstacle Objects

▪ Align to a top view of the scene.

• Select the Gizmo in the upper right of the Scene view to switch to a top-down view. 

• Zoom out a little so you can see the entire play area.

81



Prefabs: Creating More Obstacle Objects

82



Prefabs: Creating More Obstacle Objects

▪ Place duplicate pickups around the scene.

• Move the first Obstacle GameObject somewhere you like.

• With the Obstacle GameObject selected, duplicate it with Ctrl+D (macOS: Cmd+D).

• Use the Move tool to relocate the second instance of the prefab. 

• Repeat this process to place as many Obstacle GameObjects as you like in the scene.

83



Prefabs: Creating More Obstacle Objects

84



Improving Collision Detection

▪ You might encounter situations where the player seems to pass through obstacles. Let's 

explore ways to refine collision detection.

▪ Continuous Collision Detection:

• Select the obstacle prefab in the Project panel.

• In the Inspector window, navigate to the Rigidbody component.

• Under Collision Detection, change the mode to "Continuous". This instructs Unity to perform 

collision checks more frequently, potentially reducing instances where the player clips through 

the obstacle.

▪ Player Rigidbody Settings:

• Apply the same "Continuous" Collision Detection mode to the player object's Rigidbody 

component as well.

85



Improving Collision Detection

86



Improving Collision Detection

▪ The fixed timestep value in Unity's Time settings determines how often physics 

calculations are performed. A lower fixed timestep can lead to more precise physics 

simulations, potentially improving collision detection. However, it can also impact 

performance.

▪ Adjusting Fixed Timestep:

• Go to Edit > Project Settings > Time.

• Locate the Fixed Timestep property and consider setting it to a lower value (e.g., 0.01). 

(Experiment with this value to find a balance between collision accuracy and performance for 

your game.)

87



Improving Collision Detection

88



Improving Collision Detection

▪ To make the game more challenging, let’s increase the forward force to 8000.

▪ Increasing the sideways force a bit (e.g., 120) may make the movement smoother.

89



Improving Collision Detection

90



Section

Displaying Text

91



Displaying Text

▪ Now that we have a basic game structure, let's add a text element to display.

▪ Let’s say we want to display the text “Dodge the obstacles” at the top of the game when 

the game starts.

▪ When the player hits an obstacle Unity should display “You lose!” in place of “Dodge the 

obstacles”.

92



Creating a UI Text Object

▪ Add a Text object named “DisplayText”.

• In the Hierarchy window, right-click and select UI > Text (Legacy). This creates a new text 

object in your scene.

• Rename the Text (Legacy) GameObject “DisplayText”.

93



Creating a UI Text Object

94



Creating a UI Text Object

▪ Preview the full canvas in 2D view.

• Select the Canvas GameObject and press the F key to frame the entire GameObject in the 

Scene view. 

• Select the 2D toggle at the top of the Scene view to change to 2D view.

▪ Edit the text.

• Select the DisplayText GameObject.

• In the Text box, delete “New Text” and replace it with “Dodge the obstacles” as the default text 

(placeholder).

95



Creating a UI Text Object

96



Creating a UI Text Object

▪ Modify the position and size of the text.

• Using the mouse, move the text in the Scene view to the upper center.

• Change text alignment to Center on both the horizontal and vertical in the Inspector panel.

• Set the font size to a larger value (such as 36) 

• Make sure you have enough space for the text by modifying the text boundary in the Scene 

view using the mouse (holding the Alt button on the keyboard).

• Set Horizontal Overflow to Overflow

• Select Canvas in Hierarchy -> (Inspector panel) Set UI Scale Mode: Scale with screen size 

and Match: 1

97



Creating a UI Text Object

98



Changing Text on Collision

▪ We want the DisplayText to be set to “You lose!” when collision occurs (instead of 

printing “Player hit an obstacle” in the Console).

▪ Declare a new text variable.

• Open the PlayerInteraction script in your script editor. 

• Add the following new line of code underneath the movement variable: 

public Text displayText;

▪ Update OnCollisionEnter

• In the OnCollisionEnter function replace Debug.Log("Player hit an obstacle!"); with the 

following line:

displayText.text = "You Lose!";

• Save the script (Ctrl+S / Cmd+S).

99



Changing Text on Collision

▪ Assign the DisplayText variable in the Inspector window.

• Select the Player GameObject in the Hierarchy window, then drag the DisplayText 

GameObject into the Display Text slot to reference the UI text element.

• (Important: This step is very important and easy to miss. If you do not do this step, you will see 

a NullReferenceException error in the Console window and your game will not work.)

▪ Test your game.

100



Changing Text on Collision

101



Section

Implementing a Game Over State

102



Conditions for Win or Lose

▪ Now that we know how to add texts to our game, let’s finish defining conditions for 

ending the game.

• Player loses when

➢ It collides with an obstacle (we have already taken care of it)

➢ It falls off the ground

• Player wins when

➢ It reaches a certain finish point without any collision or falling off the ground

103



Detecting When the Player Falls off the Ground

▪ The y position indicates whether the player in on the ground or not.

▪ Declare a new transform variable (to keep track of player’s y position).

• Open the PlayerInteraction script in your script editor. 

• Add the following new line of code underneath the displayText variable: 

public Transform player;

▪ Add a condition in Update function

• Add the following lines inside the Update function:

if (player.position.y < -1f)

{

    displayText.text = "You Lose!";

    movement.enabled = false;

}

104



Detecting When the Player Falls off the Ground

▪ Assign the player variable in the Inspector window.

• Select the Player GameObject in the Hierarchy window, then drag the Player GameObject into 

the Player slot in the Player Interaction component (Inspector panel) to reference the Player’s 

transform component (for checking its position in the script).

▪ Test your game.

105



Detecting When the Player Falls off the Ground

106



Setting Up Win Condition

▪ Let’s say the player wins when it reaches a finish line  without any collision or falling off 

the ground.

▪ We can create and horizontal bar shaped object at the end of the obstacles which will act 

as the finish line. When the Player touches the bar, we will make the bar disappear the 

display that the Player has won.

107



Setting Up Win Condition

▪ Create a finish line bar.
• In the Hierarchy window, select the Add menu (+) > 3D Object > Cube.

• At the top of the Inspector window, rename the newly created Cube GameObject “FinishLine". 

• Reset the position of the cube.

• Then the transform values as shown below (Note: you may need to set the Z position value to 

a smaller or larger number based on where you places the obstacles):

108



Setting Up Win Condition

109



Setting Up Win Condition

▪ Create a tag (called “finish”) for the finish line object like we did for the obstacle 

object.

▪ Enable Is Trigger for FinishLine object.

• Select the FinishLine object in the Hierarchy window.

• Check the Is Trigger box underneath the Box Collider component in the Inspector window.

110



Setting Up Win Condition

111



Setting Up Win Condition

112

After creating the “finish” 

tag, make sure to assign 

the tag to FinishLine object.



Setting Up Win Condition

▪ Add OnTriggerEnter function.

• Open the PlayerInteraction script.

• Within the first curly braces, below the Update function, add the following lines:

▪ Save the script.

▪ Test the game.

113



Setting Up Win Condition

114



Adding Fog

▪ Adding Fog for Atmosphere (Optional)

• To enhance the visual appeal of the scene, we can add fog so that the Player will not be able to 

see all the obstacles at once.

• Window → Rendering → Lighting

• Select the Environment tab.

• Check the Fog box.

• Select the color to be the light blue color we picked for the sky.

• Also set the Fog’s density to 0.02.

115



Adding Fog

116



Section

Building the Game

117



Building the Game

▪ We’ve completed making our game. Although it is a avery basic game, hopefully you’ve 
learnt fundamental concepts for game development in Unity.

▪ Now let’s build/export our game.

118



Building the Game

▪ Configure your build settings.

• Save your scene.

• To open the Build Settings window, from the main menu go to File > Build Settings. 

Alternatively, you can press Shift+Control+B (macOS: Shit+Cmd+B). 

• Select Windows, Mac, Linux in the Target Platform box, 

• In Scenes in Build, select Add Open Scenes to add your Roll-a-ball game to the build. You 

can also drag scenes from the Project window to this list. 

• If SampleScene is showing in the list, disable it to exclude it from your build.

119



Building the Game

120



Building the Game

▪ Configure your player settings.

• Select Player Settings to open a range of different configuration options for the Game view. 

• If you want, change the Company Name, Product Name, and Version.

• Select Resolution and Presentation and change the Fullscreen Mode box to Windowed.

• By default, this will have a specific resolution but set the default width and height to something 

smaller if your screen uses a lower resolution.

• Close the Project Settings window and return to the Build Settings window.

121



Building the Game

▪ Build your game.

• Select Build. This will bring up a dialog that asks you to choose a build location. 

• To keep things tidy, create a new folder inside your project called “Builds” at the root of the 

project, alongside the Assets and Library folders. 

• If you’re using macOS, you can also choose a name for your build.

• Confirm that you want to Select Folder (Windows) or Save (macOS). Unity will now build the 

application and save it to the Builds folder.

122



Building the Game

▪ Play your standalone game!

• Navigate to the Builds folder and then run the executable application.

123



Building the Game

124



Acknowledgement

▪ The contents of these slides have been adopted primarily from the 
following two sources:

• https://www.youtube.com/playlist?list=PLPV2KyIb3jR53Jce9hP7G5xC4O9Agn
OuL

• https://learn.unity.com/project/roll-a-ball

125

https://learn.unity.com/project/roll-a-ball
https://learn.unity.com/project/roll-a-ball
https://learn.unity.com/project/roll-a-ball
https://learn.unity.com/project/roll-a-ball
https://learn.unity.com/project/roll-a-ball
https://learn.unity.com/project/roll-a-ball
https://learn.unity.com/project/roll-a-ball
https://learn.unity.com/project/roll-a-ball
https://learn.unity.com/project/roll-a-ball
https://learn.unity.com/project/roll-a-ball
https://learn.unity.com/project/roll-a-ball
https://learn.unity.com/project/roll-a-ball
https://learn.unity.com/project/roll-a-ball
https://learn.unity.com/project/roll-a-ball
https://learn.unity.com/project/roll-a-ball
https://learn.unity.com/project/roll-a-ball
https://learn.unity.com/project/roll-a-ball
https://learn.unity.com/project/roll-a-ball
https://learn.unity.com/project/roll-a-ball
https://learn.unity.com/project/roll-a-ball
https://learn.unity.com/project/roll-a-ball
https://learn.unity.com/project/roll-a-ball
https://learn.unity.com/project/roll-a-ball
https://learn.unity.com/project/roll-a-ball
https://learn.unity.com/project/roll-a-ball
https://learn.unity.com/project/roll-a-ball
https://learn.unity.com/project/roll-a-ball
https://learn.unity.com/project/roll-a-ball
https://learn.unity.com/project/roll-a-ball
https://learn.unity.com/project/roll-a-ball
https://learn.unity.com/project/roll-a-ball
https://learn.unity.com/project/roll-a-ball
https://learn.unity.com/project/roll-a-ball
https://learn.unity.com/project/roll-a-ball
https://learn.unity.com/project/roll-a-ball
https://learn.unity.com/project/roll-a-ball
https://learn.unity.com/project/roll-a-ball

	Slide 1: Introduction to Game Development in Unity
	Slide 2: Outline
	Slide 3: Introduction to Unity
	Slide 4: Unity
	Slide 5: The Game
	Slide 6: Download and Installation
	Slide 7: Setting up the Game
	Slide 8: Create a new Unity project
	Slide 9: Create a new Unity project
	Slide 10: Overview of the Unity IDE
	Slide 11: Create a new Scene
	Slide 12: Create a new Scene
	Slide 13: Create a new Scene
	Slide 14: Create a primitive plane
	Slide 15: Create a primitive plane
	Slide 16: Create a primitive plane
	Slide 17: Scale the Ground Plane
	Slide 18: Scale the Ground Plane
	Slide 19: Create a Player GameObject
	Slide 20: Create a Player GameObject
	Slide 21: Add colors with Materials
	Slide 22: Add colors with Materials
	Slide 23: Add colors with Materials
	Slide 24: Add colors with Materials
	Slide 25: Add colors with Materials
	Slide 26: Add colors with Materials
	Slide 27: Add colors with Materials
	Slide 28: Add colors with Materials
	Slide 29: Add colors with Materials
	Slide 30: Add colors with Materials
	Slide 31: Add colors with Materials
	Slide 32: Add colors with Materials
	Slide 33: Add colors with Materials
	Slide 34: Moving the Player
	Slide 35: Moving the Player
	Slide 36: Add a Rigidbody to the Player
	Slide 37: Add a Rigidbody to the Player
	Slide 38: Create a new script
	Slide 39: Create a new script
	Slide 40: Create a new script
	Slide 41: Assign a new Rigidbody variable
	Slide 42: Assign a new Rigidbody variable
	Slide 43: Referencing the Player’s Rigidbody
	Slide 44: Assign a new Rigidbody variable
	Slide 45: Apply force to the Player
	Slide 46: Apply force to the Player
	Slide 47: Apply force to the Player
	Slide 48: Apply force to the Player
	Slide 49: Apply force to the Player
	Slide 50: Apply force to the Player
	Slide 51: Apply force to the Player
	Slide 52: Add sideways movement
	Slide 53: Add sideways movement
	Slide 54: Add sideways movement
	Slide 55: Add sideways movement
	Slide 56: Add sideways movement
	Slide 57: Add sideways movement
	Slide 58: Moving the Camera
	Slide 59: Making the Camera follow the Player
	Slide 60: Making the Camera follow the Player
	Slide 61: Making the Camera follow the Player
	Slide 62: Making the Camera follow the Player
	Slide 63: Creating Obstacles and Detecting Collisions
	Slide 64: Creating an Obstacle
	Slide 65: Creating an Obstacle
	Slide 66: Detecting Collision
	Slide 67: Detecting Collision
	Slide 68: OnCollisionEnter Function
	Slide 69: OnCollisionEnter Function
	Slide 70: OnCollisionEnter Function
	Slide 71: Identifying Colliding Objects 
	Slide 72: Identifying Colliding Objects 
	Slide 73: Identifying Colliding Objects 
	Slide 74: Stopping Player Movement on Collision
	Slide 75: Stopping Player Movement on Collision
	Slide 76: Stopping Player Movement on Collision
	Slide 77: Prefabs: Creating More Obstacle Objects
	Slide 78: Prefabs: Creating More Obstacle Objects
	Slide 79: Prefabs: Creating More Obstacle Objects
	Slide 80: Prefabs: Creating More Obstacle Objects
	Slide 81: Prefabs: Creating More Obstacle Objects
	Slide 82: Prefabs: Creating More Obstacle Objects
	Slide 83: Prefabs: Creating More Obstacle Objects
	Slide 84: Prefabs: Creating More Obstacle Objects
	Slide 85: Improving Collision Detection
	Slide 86: Improving Collision Detection
	Slide 87: Improving Collision Detection
	Slide 88: Improving Collision Detection
	Slide 89: Improving Collision Detection
	Slide 90: Improving Collision Detection
	Slide 91: Displaying Text
	Slide 92: Displaying Text
	Slide 93: Creating a UI Text Object
	Slide 94: Creating a UI Text Object
	Slide 95: Creating a UI Text Object
	Slide 96: Creating a UI Text Object
	Slide 97: Creating a UI Text Object
	Slide 98: Creating a UI Text Object
	Slide 99: Changing Text on Collision
	Slide 100: Changing Text on Collision
	Slide 101: Changing Text on Collision
	Slide 102:  Implementing a Game Over State
	Slide 103: Conditions for Win or Lose
	Slide 104: Detecting When the Player Falls off the Ground
	Slide 105: Detecting When the Player Falls off the Ground
	Slide 106: Detecting When the Player Falls off the Ground
	Slide 107: Setting Up Win Condition
	Slide 108: Setting Up Win Condition
	Slide 109: Setting Up Win Condition
	Slide 110: Setting Up Win Condition
	Slide 111: Setting Up Win Condition
	Slide 112: Setting Up Win Condition
	Slide 113: Setting Up Win Condition
	Slide 114: Setting Up Win Condition
	Slide 115: Adding Fog
	Slide 116: Adding Fog
	Slide 117: Building the Game
	Slide 118: Building the Game
	Slide 119: Building the Game
	Slide 120: Building the Game
	Slide 121: Building the Game
	Slide 122: Building the Game
	Slide 123: Building the Game
	Slide 124: Building the Game
	Slide 125: Acknowledgement

