
Value Function Approximation
Iftekharul Islam

Contents

Value Function Approximation 2

2
Algorithms for

State Value

Estimation

1
Motivation

4
Deep Q-Network

(DQN)

3
Linear Value

Function

Approximation

Motivation

Our RL Journey So Far

Motivation: Problems with Tabular Learning

▪ So far, we’ve been representing state and action values by tables.

▪ Advantage: Intuitive and simpler to analyze

Image: Shiyu Zhao, Value Function Methods 5

Motivation: Problems with Tabular Learning

▪ Disadvantages: impractical for real-world

problems

1. Storage

➢ Backgammon: 1020 states

➢ Computer Go: 10170 states

➢ Robot arm: infinite number of states! (continuous)

2. generalization ability

Images: Pieter Abbeel, CS 188 Introduction to Artificial Intelligence. Fall 2018 6

www.youtube.com/watch?v=HT-UZkiOLv8

Let‘s say we discover through

experience that this state is bad:
In naive Q-learning we know

nothing about this state:
Or even this one:

http://www.youtube.com/watch?v=HT-UZkiOLv8
http://www.youtube.com/watch?v=HT-UZkiOLv8
http://www.youtube.com/watch?v=HT-UZkiOLv8

Motivation: From Table to Function

Example:

▪ n states: s1, . . . , sn

▪ State values are vπ (s1), . . . , vπ (sn), where π is a given policy.

▪ n is very large!

▪ We want to use a simple curve to approximate these values.

Value Function Approximation 7

Motivation: From Table to Function

We can fit a straight line to the dots.

Suppose the equation of the straight line is

w is the parameter vector; φ(s) the feature vector of s; ෝ𝒗(𝒔, 𝒘) is linear in w.

Image: Shiyu Zhao, Value Function Methods 8

Motivation: From Table to Function

▪ Retrieving a state's value:

▪ Tabular method: Direct lookup from the stored table

▪ Functional method: Compute by passing state through the function

▪ Advantage: Memory efficiency. Rather than maintaining |S| separate values, we only

store a compact parameter vector w.

Image: Shiyu Zhao, Value Function Methods 9

Motivation: From Table to Function

▪ Key distinction in updating values:

▪ Advantage: Ability to generalize. Adjusting w for one state automatically influences
estimates for similar states.

Image: Shiyu Zhao, Value Function Methods 10

Motivation: From Table to Function

▪ The benefits come at a cost: perfect representation isn't achievable.

▪ We can achieve more accurate fits using higher-degree polynomials:

▪ Key observations:

• Increasing dimensions of w and φ(s) can improve accuracy

• While the relationship between states and values may be nonlinear, we maintain

linearity in parameters by encoding complexity within the feature mapping φ(s)

Value Function Approximation 11

Key Ideas

▪ Core concept: Use parameterized functions to approximate values:

ෝ𝒗(𝒔, 𝒘) ≈ 𝒗𝝅(𝒔)

 where 𝑤 ∈ ℝ𝑚 contains the parameters

▪ Fundamental distinction: How we access and modify v(s)

▪ Key benefits:

• Memory efficiency: The dimensionality of w can be far smaller than |S|

• Generalization capability: Updating w for a visited state propagates information to

unvisited states

Value Function Approximation 12

Algorithm for State Value Estimation

Formal Problem Setup

Let's formalize the approach:

• 𝒗𝝅(𝒔) denotes the true state value

• ෝ𝒗(𝒔, 𝒘) represents our approximation

• Objective: Identify optimal 𝒘 that minimizes approximation error

across all states

Finding optimal 𝒘 requires two components:

1. Defining an objective function

2. Developing optimization algorithms

Value Function Approximation 14

Objective Function

▪ Our objective function:

▪ Goal: Find the 𝒘 that minimizes 𝑱 𝒘

• We can use the gradient-descent algorithm:

• Gradient descent finds a local minimum

• To find global minimum, we use Stochastic gradient descent (SGD) which

samples the gradient:

• Expected update is equal to full gradient update

David Siver, Reinforcement Learning, 2016 15

Algorithms for Prediction

▪ But we do not know the true value function 𝒗𝝅 𝒔

▪ Replace 𝒗𝝅 𝒔 with a target:

David Siver, Reinforcement Learning, 2016 16

Method Target

Monte-Carlo 𝐺𝑡

TD(0) 𝑅𝑡+1 + 𝛾 ො𝑣(𝑠𝑡+1, 𝐰)

TD(λ) 𝐺𝑡
λ

▪ We can use similar approach and replacements for 𝒒𝝅 𝒔, 𝒂 :

▪ Control with Function Approximator

• policy evaluation: approximated policy evaluation ෡𝑸(. , . , 𝒘) ≈ 𝒒𝝅

• policy improvement: ϵ-greedy

Method Target

Monte-Carlo 𝐺𝑡

SARSA 𝑅𝑡+1 + 𝛾 ො𝑞(𝑠𝑡+1, 𝑎𝑡+1, 𝐰)

Q-learning 𝑅𝑡+1 + 𝛾𝑚𝑎𝑥𝑎𝑡+1
ො𝑞(𝑠𝑡+1, 𝑎𝑡+1, 𝐰)

Algorithms for Control

David Siver, Reinforcement Learning, 2016 17

Linear Value Function Approximation

▪ We represent value function by a linear combination of features

▪ Features are functions from states to real numbers that capture

important properties of the state

▪ Example features for Pac Man:

• Distance to closest ghost

• Distance to closest dot

• Number of ghosts

Image: Shiyu Zhao, Value Function Methods 18

Linear Value Function Approximation

▪ We represent value function by a linear combination of features

▪ Stochastic gradient descent converges on global optimum

▪ Update rule:

▪ Update = step-size × prediction error × feature value

David Siver, Reinforcement Learning, 2016 19

Linear Value Function Approximation

▪ Two key questions to address:

1. Can we approximate any V-/Q-value function with a linear FA?

➢ Yes! (But the proof is out of this class.)

2. Is it easy to find such a linear FA?

Value Function Approximation 20

Linear Value Function Approximation

Value Function Approximation 21

𝑥

𝑦

10

0

0

• Represent state 𝑠 by a feature vector:

𝜙 𝑠 =

1
𝑥
𝑦

• Perform linear VFA:

= 𝜙 𝑠 𝑇𝑤 = 1 𝑥

= 𝑤0 + 𝑤1𝑥 + 𝑤2𝑦

𝑦

𝑤0

𝑤1

𝑤2

ො𝑣(𝑠, 𝑤)

Example: Grid world problem

• No obstacles

• Actions (deterministic): Up/Down/Left/Right

• No discounting

• Reward: +10 at goal, −1 everywhere else

Linear Value Function Approximation

Value Function Approximation 22

𝑥

𝑦

10

0

0

= 𝜙 𝑠 𝑇𝑤 = 1 𝑥

= 10 – 𝑥 − 𝑦

𝑦

10
-1

-1
ො𝑣(𝑠, 𝑤)

• (Manhattan distance.)

Is there a good linear approximation? → YES

Example: Grid world problem

• No obstacles

• Actions (deterministic): Up/Down/Left/Right

• No discounting

• Reward: +10 at goal, −1 everywhere else

Linear Value Function Approximation

Value Function Approximation 23

𝑥

𝑦

10

0

0

• But what if we move the reward?

= 𝜙 𝑠 𝑇𝑤 = 1 𝑥

= 𝑤0 + 𝑤1𝑥 + 𝑤2𝑦

𝑦

𝑤0

𝑤1

𝑤2

ො𝑣(𝑠, 𝑤)

Is there a good linear approximation? → NO

Unless…

Example: Grid world problem

• No obstacles

• Actions (deterministic): Up/Down/Left/Right

• No discounting

• Reward: +10 at goal, −1 everywhere else

Linear Value Function Approximation

Value Function Approximation 24

Example: Grid world problem

• No obstacles

• Actions (deterministic): Up/Down/Left/Right

• No discounting

• Reward: +10 at goal, −1 everywhere else

𝑥

𝑦

10

0

0

Is there a good linear approximation now? → YES

…we add a new feature z.

= 𝜙 𝑠 𝑇𝑤 = 1 𝑥

= 𝑤0 + 𝑤1𝑥 + 𝑤2𝑦 + 𝑤3𝑧

𝑦

𝑤0

𝑤1

𝑤2
𝑤3

ො𝑣(𝑠, 𝑤) z

𝑧 = 3 − 𝑥 + |3 − 𝑦|

(I’ll leave the figuring out the 𝑤i values to you.

Hint: one or more 𝑤i will be 0.)

Linear Value Function Approximation

Image: Pieter Abbeel, Advanced Robotics, Fall 2019 25

Example: Tetris

Is it easy to find such a linear FA? → No!

Linear Value Function Approximation

Image: Pieter Abbeel, Advanced Robotics, Fall 2019 26

Example: Pacman

Is it easy to find such a linear FA? → No!

Linear Value Function Approximation

Value Function Approximation 27

Example: Cartpole

Is it easy to find such a linear FA? → No!

Lagoudakis, M. G. and Parr, R.: Least-Squares Policy Iteration. JMLR. 2003

Linear Value Function Approximation

Value Function Approximation 28

Example: Bicycle balancing

Lagoudakis, M. G. and Parr, R.: Least-Squares Policy Iteration. JMLR. 2003

Is it easy to find such a linear FA? → No!

Non-linear Value Function Approximation

▪ Why if we replace linear approximation with NNs?

• Theory tells us that this doesn‘t work out

Images: David Siver, Reinforcement Learning, 2016 29

Convergence of Prediction Algorithms

Convergence of Control Algorithms

Non-linear Value Function Approximation

▪ Why if we replace linear approximation with NNs?

• Theory tells us that this doesn‘t work out

▪ The deadly triad:

1. Function approximation

2. Bootstrapping

3. Off-policy learning

If you have all three at once, learning can fail (even when each pair alone might be fine).

Value Function Approximation 30

Non-linear Value Function Approximation

▪ Why if we replace linear approximation with NNs?

• Theory tells us that this doesn’t work out

• But in some cases, it did! ☺

• Example: Gerry Tesauro’s TD-Gammon (1992)

➢ Neural network (NN) with 80 hidden units

➢ Used RL for 300,000 games of self-play

➢ One of the top players in the world!

Image: http://incompleteideas.net/book/first/ebook/node108.html 31

Tesauro, G.: Temporal difference learning and TD-Gammon. 1995.

Non-linear Value Function Approximation

▪ Why if we replace linear approximation with NNs?

• Theory tells us that this doesn‘t work out

▪ Besides some few hand-crafted and tuned successes people did not manage to

apply NNs “as is” to RL

Value Function Approximation 32

Until…

Deep Q-Network (DQN)

DQN

Value Function Approximation 34

DQN

▪ Surpassed human-level performance in 29 games of the Atari 2600 series

▪ Same RL architecture to learn a policy in each game

▪ End-to-end learning with just image pixels as input

▪ “The” contribution that started a round of huge investments in RL

Value Function Approximation 35

DQN

Value Function Approximation 36

To learn more:

Mnih, Volodymyr, et al. "Human-level control

through deep reinforcement learning." nature

518.7540 (2015): 529-533.

DQN

Value Function Approximation 37

DQN

Value Function Approximation 38

DQN

Value Function Approximation 39

To learn more:

Mnih, Volodymyr, et al. "Human-level control

through deep reinforcement learning." nature

518.7540 (2015): 529-533.

DQN

Value Function Approximation 40

DQN: How it works

▪ DQNs are essentially “Q-Learning on steroids” (Deep NN as VFA)

▪ Objective function:

Image: Christopher Mutschler, Reinforcement Learning, 2025 41

Q-Learning with NN VFA Q-Learning with Linear VFA

DQN: How it works

Image: Christopher Mutschler, Reinforcement Learning, 2025 42

DQN: How it works

Image: Christopher Mutschler, Reinforcement Learning, 2025 43

DQN: How it works

Image: Christopher Mutschler, Reinforcement Learning, 2025 44

DQN: How it works

Image: Christopher Mutschler, Reinforcement Learning, 2025 45

DQN: How it works

Image: Christopher Mutschler, Reinforcement Learning, 2025 46

DQN: How it works

Image: Christopher Mutschler, Reinforcement Learning, 2025 47

DQN: How it works

Image: Christopher Mutschler, Reinforcement Learning, 2025 48

DQN: How it works

Image: Christopher Mutschler, Reinforcement Learning, 2025 49

DQN: How it works

Image: Christopher Mutschler, Reinforcement Learning, 2025 50

DQN: How it works

Image: Christopher Mutschler, Reinforcement Learning, 2025 51

Extensions: Double DQN

Value Function Approximation 52

▪ DQN overestimates Q-values due to using the same network for action

selection and evaluation.

▪ Double DQN separates these roles:

▪ Online network (𝜃) selects; target network (𝜃−) evaluates.

▪ Reduces bias, giving more stable and accurate estimates.

To learn more:

Van Hasselt, Hado, Arthur Guez, and David Silver. "Deep

reinforcement learning with double q-learning." Proceedings of

the AAAI conference on artificial intelligence. Vol. 30. No. 1. 2016.

To learn more:

Schaul, Tom, et al. "Prioritized

experience replay." arXiv preprint

arXiv:1511.05952 (2015).

Extensions: Prioritized Experience Replay

Value Function Approximation 53

▪ Uniform replay wastes updates on uninformative samples.

▪ Prioritized Replay samples experiences by TD error magnitude 𝛿𝑖 :
𝑃 𝑖 ∝ ∣ 𝛿𝑖 ∣𝛼

▪ Focuses on transitions the agent predicts poorly.

▪ Importance sampling corrects bias → faster, smarter learning.

Extensions: Dueling DQN

Value Function Approximation 54

▪ DQN learns Q-values for all actions — even when most don’t matter.

▪ Dueling DQN splits Q into value and advantage streams:

▪ Learns which states are valuable independently of specific actions.

▪ Improves generalization and stability.

To learn more:

Wang, Ziyu, et al. "Dueling network architectures for deep

reinforcement learning." International conference on machine

learning. PMLR, 2016.

Extensions: Rainbow DQN

Value Function Approximation 55

▪ Combines the best ideas from

earlier variants:

1. Double DQN – reduces overestimation

2. Prioritized Replay – smarter sampling

3. Dueling Net – efficient value learning

4. Multi-step Returns – faster credit assignment

5. Noisy Nets – exploration via parameter noise

6. Distributional RL – models return distribution

▪ Unified, high-performing DQN

achieving state-of-the-art results.

To learn more:

Hessel, Matteo, et al. "Rainbow: Combining improvements in

deep reinforcement learning." Proceedings of the AAAI

conference on artificial intelligence. Vol. 32. No. 1. 2018.

Summary

▪ Tabular methods don't scale. State spaces are too large, generalization

is impossible.

▪ Function approximation, especially with deep learning, enables RL to

tackle real-world problems with complex, high-dimensional state

spaces.

Value Function Approximation 56

	Slide 1: Value Function Approximation
	Slide 2: Contents
	Slide 3: Motivation
	Slide 4: Our RL Journey So Far
	Slide 5: Motivation: Problems with Tabular Learning
	Slide 6: Motivation: Problems with Tabular Learning
	Slide 7: Motivation: From Table to Function
	Slide 8: Motivation: From Table to Function
	Slide 9: Motivation: From Table to Function
	Slide 10: Motivation: From Table to Function
	Slide 11: Motivation: From Table to Function
	Slide 12: Key Ideas
	Slide 13: Algorithm for State Value Estimation
	Slide 14: Formal Problem Setup
	Slide 15: Objective Function
	Slide 16: Algorithms for Prediction
	Slide 17: Algorithms for Control
	Slide 18: Linear Value Function Approximation
	Slide 19: Linear Value Function Approximation
	Slide 20: Linear Value Function Approximation
	Slide 21: Linear Value Function Approximation
	Slide 22: Linear Value Function Approximation
	Slide 23: Linear Value Function Approximation
	Slide 24: Linear Value Function Approximation
	Slide 25: Linear Value Function Approximation
	Slide 26: Linear Value Function Approximation
	Slide 27: Linear Value Function Approximation
	Slide 28: Linear Value Function Approximation
	Slide 29: Non-linear Value Function Approximation
	Slide 30: Non-linear Value Function Approximation
	Slide 31: Non-linear Value Function Approximation
	Slide 32: Non-linear Value Function Approximation
	Slide 33: Deep Q-Network (DQN)
	Slide 34: DQN
	Slide 35: DQN
	Slide 36: DQN
	Slide 37: DQN
	Slide 38: DQN
	Slide 39: DQN
	Slide 40: DQN
	Slide 41: DQN: How it works
	Slide 42: DQN: How it works
	Slide 43: DQN: How it works
	Slide 44: DQN: How it works
	Slide 45: DQN: How it works
	Slide 46: DQN: How it works
	Slide 47: DQN: How it works
	Slide 48: DQN: How it works
	Slide 49: DQN: How it works
	Slide 50: DQN: How it works
	Slide 51: DQN: How it works
	Slide 52: Extensions: Double DQN
	Slide 53: Extensions: Prioritized Experience Replay
	Slide 54: Extensions: Dueling DQN
	Slide 55: Extensions: Rainbow DQN
	Slide 56: Summary

