Value Function Approximation

Iftekharul Islam

Contents

Motivation Algorithms for Linear Value Deep Q-Network
State Value Function (DQN)
Estimation Approximation

Value Function Approximation

Motivation

Our RL Journey So Far
. Optimal Control
|

How Do We Measure “Optimal” Value functions
or “Good”? V(s), Q(S a)

How Are those Values Related? The Bellman Equation
Do We Knowgz:? the World Model-based RL Model-free RL

What Kind of Learning Problem Predlctlon Control
Are We Solving? How good is m? Find the best
Off-Policy

What Data Can We Learn From? On- Pollcy
What About Large State Functlon
Spaces? Approx1mat10n
: Value Funct10n Policy Gradient
?
What Do We Parameterize: Methods

Motivation: Problems with Tabular Learning

= So far, we’ve been representing state and action values by tables.

State Sq So Sy
Value vr(S1) Vr(82) Vr(Sp)
aj as as a4 as
51 qr(s1,a1) qn(s1,a2) qr(s1,a3) qr(s1,aaq) qr(s1,as)
59 qr(s9,a1) gn(sg,az) gr(s9,as) gr(so,aaq) gr(sg,as)

= Advantage: Intuitive and simpler to analyze

Image: Shiyu Zhao, Value Function Methods

Motivation: Problems with Tabular Learning

= Disadvantages: impractical for real-world
problems
1. Storage
> Backgammon: 10%° states

> Computer Go: 10179 states
» Robot arm: infinite number of states! (continuous)

(TN’ o$ oo ok ——
— . BF el . 00:01:00
@) O ! e ® @ S B 4

www.youtube.com/watch?v=HT-UZkiOLv8

2. generalization ability

Let's say we discover through In naive Q-learning we know

experience that this state is bad: nothing about this state: O R I G

L]
*
L]

*

LR I T I B A
.

L *
- -
- *
L -
* *
L -
L *
- -
® o

*
*

Images: Pieter Abbeel, CS 188 Introduction to Artificial Intelligence. Fall 2018 6

http://www.youtube.com/watch?v=HT-UZkiOLv8
http://www.youtube.com/watch?v=HT-UZkiOLv8
http://www.youtube.com/watch?v=HT-UZkiOLv8

Motivation; From Table to Function

Example:
* nstates: Si, ..., S,
= State values are V:(S:), . . ., Vz(S.), where 1 is a given policy.

= nis very large!
= We want to use a simple curve to approximate these values.

Value Function Approximation

Motivation; From Table to Function

We can fit a straight line to the dots.

U(s)=as+b
0(s) 4

S1 So2 83 S4 ... Sn S

Suppose the equation of the straight line is

N~
BT (5) "
e

v(s,w)=as+ b= [s,1] { Z] = ¢ (s)w

w is the parameter vector; @(s) the feature vector of s; v(s,w) is linear in w.

Image: Shiyu Zhao, Value Function Methods

Motivation; From Table to Function

= Retrieving a state's value:
= Tabular method: Direct lookup from the stored table

= Functional method: Compute by passing state through the function

v(s,w)
R — w R

function

= Advantage: Memory efficiency. Rather than maintaining |S| separate values, we only
store a compact parameter vector w.

Image: Shiyu Zhao, Value Function Methods 9

Motivation; From Table to Function

= Key distinction in updating values:

os) B(s) .
update v(s3)
* * * > ° °
| 51 52 8I3 E | S1 S 83 s
(a) Tabular method
0(s)
‘ update w for sj
3
L4

‘ 811 S}Q Slg S
(b) Function method

= Advantage: Ability to generalize. Adjusting w for one state automatically influences
estimates for similar states.

Image: Shiyu Zhao, Value Function Methods 10

Motivation; From Table to Function

= The benefits come at a cost: perfect representation isn't achievable.

= We can achieve more accurate fits using higher-degree polynomials:

-
b(s,w)=as’+bs+c=[s*s1]| b | =¢" (s)w.
S
#T(s) L © .
N——

= Key observations:
* Increasing dimensions of w and ¢(s) can improve accuracy

« While the relationship between states and values may be nonlin
linearity in parameters by encoding complexity within the feature

r, we maintain

11

Value Function Approximation

Key ldeas

Core concept: Use parameterized functions to approximate values:
v(s,w) = v.(s)

where w € R™ contains the parameters
Fundamental distinction: How we access and modify v(s)

Key benefits:
 Memory efficiency: The dimensionality of w can be far smaller than |S|

» Generalization capability: Updating w for a visited state propagates information to
unvisited states

Value Function Approximation 12

Algorithm for State Value Estimation

Formal Problem Setup

Let's formalize the approach:
* v.(s) denotes the true state value
* V(s,w) represents our approximation

* Objective: Identify optimal w that minimizes approximation error
across all states -

Finding optimal w requires two components:
1. Defining an objective function
2. Developing optimization algorithms

Value Function Approximation 14

Objective Function

= Our objective function: J(w) = E, [(v(S) — ¥(S,w))?]

= Goal: Find the w that minimizes J(w)
» We can use the gradient-descent algorithm:

Aw = —%anJ(w)
= aE; [(vr(S) — V(S,w))Vw7(S,w)]

* Gradient descent finds a local minimum

* To find global minimum, we use Stochastic gradient descent (SGD) which
samples the gradient:

Aw = a(vy(S) — V(S,w))Vuv (S, w)
« Expected update is equal to full gradient update

David Siver, Reinforcement Learning, 2016 15

Algorithms for Prediction

= But we do not know the t

rue value function v(s)

= Replace v,(s) with a target:

J
(5 s et

Aw = o
Method Target
Monte-Carlo @ [
TD(0) (Res +¥P(Sery, W)
TD(A) el

David Siver, Reinforcement Learning, 2016

16

Algorithms for Control

= We can use similar approach and replacements for g, (s, a):

Aw = a(q-(S5,A) — 4(S,A,w))Vwi(S, A w)

Method Target
Monte-Carlo G;
SARSA Riy1 +vq(Se41, Ar11, W)
Q-learning Riy1 +ymaxg,, G(St+1, Aps1, W)

= Control with Function Approximator
» policy evaluation: approximated policy evaluation Q(.,.,w) = q,
» policy improvement: e-greedy

David Siver, Reinforcement Learning, 2016

Linear Value Function Approximation

= We represent value function by a linear combination of features

» Features are functions from states to real numbers that capture
important properties of the state

= Example features for Pac Man:
 Distance to closest ghost
 Distance to closest dot
* Number of ghosts

Image: Shiyu Zhao, Value Function Methods 18

Linear Value Function Approximation

= We represent value function by a linear combination of features

J(w) = Er [(ve(S) —[0(5. w))?]

J(w) = Eq |(va(S) ~(S)Tw)t]

= Stochastic gradient descent converges on global optimum

= Update rule:

Aw = a(vx(S) - ﬁ(S,w)]

= Update = step-size X prediction error X feature value

David Siver, Reinforcement Learning, 2016

19

Linear Value Function Approximation

= Two key questions to address:

1. Can we approximate any V-/Q-value function with a linear FA?
> Yes! (But the proof is out of this class.)

2. Is it easy to find such a linear FA?

Value Function Approximation

20

Linear Value Function Approximation

Example: Grid world problem

A

No obstacles
Actions (deterministic): Up/Down/Left/Right

No discounting

Reward: +10 at goal, -1 everywhere else

Represent state s by a feature vector:

1
o]

Perform linear VFA:

W
o(s,w)= ¢p(s)Tw =[1 x y] W1]
w2

= wWo + Wix + way

Value Function Approximation

21

Linear Value Function Approximation

Example: Grid world problem

< X 0
« No obstacles I
« Actions (deterministic): Up/Down/Left/Right 10(]0
* No discounting
 Reward: +10 at goal, -1 everywhere else y

10
ﬁ(S,W)= ¢(S)TW = [1 X y] [-::] v

=10-x — y

(Manhattan distance.)

Is there a good linear approximation? — YES

Value Function Approximation 22

Linear Value Function Approximation

Example: Grid world problem

A

No obstacles
Actions (deterministic): Up/Down/Left/Right

No discounting

Reward: +10 at goal, -1 everywhere else

But what if we move the reward?

10

w0
D(s,w)=p(s)Tw =1 x y] [W1]

w2

= W + Wix + way

Is there a good linear approximation? — NO

Unless...

Value Function Approximation

23

Linear Value Function Approximation

Example: Grid world problem

A

« No obstacles
« Actions (deterministic): Up/Down/Left/Right

* No discounting
 Reward: +10 at goal, -1 everywhere else

10

...we add a new feature z.

osw)=¢()'w=[1 x y z

= Wwo + wix + wpy + w3z

Is there a good linear approximation now? — YES
z=13—-x[+[3 -y

(I’ll leave the figuring out the wj; values to you.
Hint: one or more w; will be 0.)

Value Function Approximation

24

Linear Value Function Approximation

Example: Tetris

m state: board configuration + shape of the falling piece ~2200 states!

= action: rotation and translation applied to the falling piece

m 22 features aka basis functions d)z

Ten basis functions, 0, . . ., 9, mapping the state to the height h[k] of each column.

Nine basis functions, 10, . . ., 18, each mapping the state to the absolute difference
between heights of successive columns: |h[k+1] - h[k]|, k=1, ..., 9.

One basis function, 19, that maps state to the maximum column height: max, h[k]

One basis function, 20, that maps state to the number of ‘holes’ in the board.

One basis function, 21, that is equal to 1 in every state.

Vo(s) = Z 0ii(s) = 6" p(s)
i—0

[Bertsekas & loffe, 1996 (TD); Bertsekas & Tsitsiklis 1996 (TD); Kakade 2002 (policy gradient); Farias & Van Roy, 2006 (approximate LP)]

Is it easy to find such a linear FA? — No!

Image: Pieter Abbeel, Advanced Robotics, Fall 2019

25

Linear Value Function Approximation

Example: Pacman

Vis)= ¢,

*

+ 61 “distance to closest ghost”
+ 05 “distance to closest power pellet”
+ @3“in dead-end”

+ 04 “closer to power pellet than ghost”
+

=) 0:di(s) = 0" ¢(s)
1=0

»

»
»
*
*
»
L
*
*
®

*»

Is it easy to find such a linear FA? — No!

Image: Pieter Abbeel, Advanced Robotics, Fall 2019 26

Linear Value Function Approximation

Example: Cartpole

We applied LSPI with a set of 10 basis functions for each of the 3 actions, thus a total
of 30 basis functions, to approximate the value function. These 10 basis functions included
a constant term and 9 radial basis functions (Gaussians) arranged in a 3 x 3 grid over the

2-dimensional state space. In particular, for some state s = (6,6) and some action a, all
basis functions were zero, except the corresponding active block for action a which was

Is —pall® lls —p2l® lIs — psll? Is — poll?

(]_’ e— 202 , € 202 e 202 . 393 B e_ 202)T .

.

where the y;’s are the 9 points of the grid {—=/4, 0, +m/4} x {—1, 0, +1} and ¢? = 1.

Lagoudakis, M. G. and Parr, R.: Least-Squares Policy Iteration. JMLR. 2003
Is it easy to find such a linear FA? — No!

Value Function Approximation

Linear Value Function Approximation

Example: Bicycle balancing

The goal in the bicycle balancing and riding problem (Randlgv and Alstrom, 1998) is to
learn to balance and ride a bicycle to a target position located 1 km away from the starting
location. Initially, the bicycle’s orientation is at an angle of 90° to the goal. The state
description is a six-dimensional real-valued vector (6, t‘j,w,w,&'}, 1), where # is the angle of
the handlebar, w is the vertical angle of the bicycle, and 1 is the angle of the bicycle to
the goal. The actions are the torque 7 applied to the handlebar (discretized to {—2,0,+2})
and the displacement of the rider v (discretized to {—0.02,0,+40.02}). In our experiments,

actions are restricted so that either 7 = 0 or v = 0 giving a total of 5 actions.'? The noise o o
in the system is a uniformly distributed term in [—0.02, +0.02] added to the displacement - N S
component of the action. The dynamics of the bicycle are based on the model of Randlgv L N B e S
and Alstrom (1998) and the time step of the simulation is set to 0.01 seconds. : “ pecall I |
The state-action value function Q(s,a) for a fixed action a is approximated by a linear _m; S smm; \\soy‘
combination of 20 basis functions: w esion R
o . —— . — - — , A
@i O, Wk, Wt wa, 0, 0, 0%, 62, 00, wh, wo? W20, ¥, Y, VO, b, U2, wD
where) = 7 — ¢ for ¢ > 0 and ¥ = —7 — ¢ for ¢ < 0. Note that the state variable & 4,0035 :
is completely ignored. This block of basis functions is repeated for each of the 5 actions, Neamein
giving a total of 100 basis functions (and parameters). -angl_ . - - _ - v

Lagoudakis, M. G. and Parr, R.: Least-Squares Policy Iteration. JMLR. 2003

Is it easy to find such a linear FA? — No!

Value Function Approximation 28

Non-linear Value Function Approximation

= Why if we replace linear approximation with NNs?
» Theory tells us that this doesn‘t work out

Convergence of Prediction Algorithms
On/Off-Policy ~Algorithm Table Lookup Linear Non-Linear

On-Polic MC / 4 (‘ﬁ
TTONEY TD(0) v v/ X
TD[)Q v v X
: MC v v v
Off-Policy (T-B'(’J)\ Y X X 6
TD()) / X X v
Convergence of Control Algorithms
Algorithm Table Lookup Linear Non-Linear
Monte-Carlo Control v [_E/)_J X
Sarsa v V) X
Q-learning v X X

(V') = chatters around near-optimal value function

Images: David Siver, Reinforcement Learning, 2016

29

Non-linear Value Function Approximation

= Why if we replace linear approximation with NNs?
» Theory tells us that this doesn‘t work out

= The deadly triad:

1. Function approximation
2. Bootstrapping
3. Off-policy learning

If you have all three at once, learning can fail (even when each pair alone might be fine).

Value Function Approximation

30

Non-linear Value Function Approximation

= Why if we replace linear approximation with NNs?
» Theory tells us that this doesn’t work out

« But in some cases, it did! ©

white pieces move
counterclockwise

« Example: Gerry Tesauro’s TD-Gammon (1992)

> Neural network (NN) with 80 hidden units
» Used RL for 300,000 games of self-play [

o
» One of the top players in the world! 8 ; i _!_'é

black pieces
move clockwise

Tesauro, G.: Temporal difference learning and TD-Gammon. 1995.

Image: http://incompleteideas.net/book/first/ebook/node108.html 31

Non-linear Value Function Approximation

= Why if we replace linear approximation with NNs?
» Theory tells us that this doesn‘t work out

= Besides some few hand-crafted and tuned successes people did not manage to
apply NNs “as is” to RL

Until...

Value Function Approximation 32

Deep Q-Network (DQN)

DQN

Letter = Published: 25 February 2015

Human-level control through deep reinforcement
learning

Volodymyr Mnih, Koray Kavukcuoglu E, David Silver, Andrei A. Rusu, Joel Veness, Marc G. Bellemare, Alex

Graves, Martin Riedmiller, Andreas K. Fidjeland, Georg Ostrovski, Stig Petersen, Charles Beattie, Amir Sadik,

loannis Antonoglou, Helen King, Dharshan Kumaran, Daan Wierstra, Shane Legg & Demis Hassabis &

Nature 518, 529-533 (2015) ‘ Cite this article

583k Accesses | 22k Citations | 1621 Altmetric | Metrics

Value Function Approximation 34

DQN

= Surpassed human-level performance in 29 games of the Atari 2600 series
= Same RL architecture to learn a policy in each game

= End-to-end learning with just image pixels as input

= “The” contribution that started a round of huge investments in RL

Value Function Approximation

35

Video Pinball |
Boxing-
Breakout_
Star Gunner_
Robo1ank_
Allantis |
Crazy Climber-
Gopher-
Demon Attack-
Name This Game |
Krull]
Assault
Road Runner |
Kangaroo_
James Bond-
Tennis |
Pong—
Space Invaders |
Beam Rider_
Tutankham_
Kung-Fu Master_
Freeway-
Time Pilot |
Enduro-
Fishing Derby_
Up and Downd
Ice Hockey_
Q*Bert |
H.ER.O.]
Asterix |
Battle Zone |
Wizard of Wor |
Chopper Command |
Centipede_
Bank Heist |
River Raid |
Zaxxon-
Amidar-
Alien |
Venture_
Seaquest—
Double Dunk |
Bowling |[-14%
Ms. Pacman |[13%
Asteroids | | 7%
Frostbite | 6%

at human-level or above

below human-level

Ig!!!lll!!!lll.llll!llll!lll

-

Private Eye— 2%
Montezuma's Revenge || 0%

e

Best Linear Learner

To learn more:

))
| 1 I I 1 1 (L 1
0% 100% 200% 300% 400% 500% 600% 1000% 4500%

N\ Mnih, Volodymyr, et al. "Human-level control
through deep reinforcement learning." nature

518.7540 (2015): 529-533. Value Function Approximation

DQN

DQN

observation

Value Function Approximation

38

DON

Convolution
v

To learn more:

Mnih, Volodymyr, et al. "Human-level control
through deep reinforcement learning." nature
518.7540 (2015): 529-533.

Convolution
v

RN
[a=[a}

A
!

/|
|m[s]

e

Wi
7T\
doooon

7

/

AN\
NN

=]

unnmnh\n o

Fully cgnnected

o @ 0 o o 0 o 0 @ 0

o @& o @ o 0 o o 0 o

Value Function Approximation

Fully cgnnected

No input

v +0O
k+O
*/ €+0O
| k+O

iV iNg>
+ i+ I+ 0+
] (@] (@] (®)

39

DQN

m End-to-end learning of values Q(s, a) from pixels s
m Input state s is stack of raw pixels from last 4 frames
m Output is Q(s, a) for 18 joystick/button positions

m Reward is change in score for that step

32 4x4 filters 256 hidden units Fully-connected linear

I— I output layer

| 6 8x8 filters

4xB84x84

Stack of 4 previous) Fully-connected layer
frames Convolutional layer Convolutional layer of rectified linear units
of rectified linear units of rectified linear units

Network architecture and hyperparameters fixed across all games

Value Function Approximation

40

DQAN: How it works

= DQNs are essentially “Q-Learning on steroids” (Deep NN as VFA)
= Objective function: L(w;) = Es,a,r,suai[(}{; - Q(s, a,w))z]

Q-Learning with Linear VFA Q-Learning with NN VFA
+ Approximated Q-function with * Approximated Q-function with NN
parameters w and feature vector ¢: and parameters w:
Q(s,a) ~ wig(s,a) Q(s,a) =~ Q(s,a;w™)
—J
» Target value: « Target value:
yi —r+ymax@L¢(s a)] yi:r-l—ygr}gﬁé(s’,a’;w‘)
L L _—
Updating: » Updating:
Wis1 = Wi + a[y; — wi ¢(s,a)]p(s, a) Wiv1 = w; + aly; — Q(s, a; w) |V, Q(s, a; wy)

Every K steps: w™ « w;

Image: Christopher Mutschler, Reinforcement Learning, 2025

41

DQAN: How it works

action (a;)
ENV ‘

ay = € — argmax, Q(sg a)

Q-Learning

Q(Sr: as) « Qs ar) + a lT'r +ymax Q(ses1,a) — Qs ﬂt)J]

Image: Christopher Mutschler, Reinforcement Learning, 2025

42

DQAN: How it works

[NV] action (a;)

State (s;)
Action (a;)

Reward (1)

Next State (s¢44)

two passes: s;, 5;.1

a, = € — argmax, O (s,, a; w)

T

L J

Q':(Sy, ag; W) 1

Q(si+ a; w) ?

2
]
-
©
o
=]

B L «

DQN V0.1

N N 2
;= [?}- Fymax G aw) =0, a,-:wj]
a s)

Image: Christopher Mutschler, Reinforcement Learning, 2025

—— o o e o e

43

DQAN: How it works

= How does it work?

= A bag of tricks for stabilizing learning:
(I;}mer‘m Replaﬂ

Problem: Experiences are correlated over time.
— Oscillations and divergence during learning.

Solution: Random sampling of experience mini-batches from a memory.
— Samples can be re-used to increase data efficiency.

—_—
— Breaking correlations by randomization reduces variance.

51,41, 72,5
$,a, 13,53 | — s.a,r5s

53, d3, 4,54

Sty dty Mt41sSt41 —7 | Sty ey Mt415 St4+1

http Awww0 cs uel ac uk'siaft’d silver/web/Resources files/deep 1l pdf

Image: Christopher Mutschler, Reinforcement Learning, 2025

DQAN: How it works

[NV] action (a;)

State (s;)
Action (a;)

Reward (1)

Next State (s¢44)

two passes: s;, 5;.1

a, = € — argmax, O (s,, a; w)

T

L J

Q':(Sy, ag; W) 1

Q(si+ a; w) ?

2
]
-
©
o
=]

B L «

DQN V0.1

N N 2
;= [?}- Fymax G aw) =0, a,-:wj]
a s)

Image: Christopher Mutschler, Reinforcement Learning, 2025

—— o o e o e

45

DQAN: How it works

action (a;)
[ENV]

State (s;)

Action (a;)

Reward (1)

Next State (s¢44)

’-.--______.-_____________-______—___-______—_-_-__-____-__-_
’/ a; = € —argmax, Q (s, a;w)
‘ A ;
I n
i :
1
I two passes: 5;,5;,1 -
1 i
! %5
| of
I 51,041,711, 52
1 S2,03,72,83 3 Q(s,-, a;w) !
: §3,03,73, 54 2 Q(sisr,a;w) 2
I ©
1 3
1
1
I b L 4
1
\ N - 2
\ DQNV0.2 r={r+ Yy max QCs,,q, a;w) = 0Gs,, ;|
\ A .
. 2 1

Image: Christopher Mutschler, Reinforcement Learning, 2025

DQAN: How it works

= How does it work?

= A bag of tricks for stabilizing learning:

Separate, frozen target Q-network:
Problem: Target Q-values y; = r + vy Ilgad}é @(5’, a’; w;_,) change constantly.
a' e

— Oscillations and divergence during learning.

Image: Christopher Mutschler, Reinforcement Learning, 2025

47

DQAN: How it works

How does it work?
A bag of tricks for stabilizing learning:

Separate, frozen target Q-network:

Solution: Two Q-networks:
- Frozen Target Q-network with parameters w™ predicts Q-learning targets Q(s’, a’; w;).
- Dynamic Main Q-network with parameters w evaluates current Q-values Q(s’, a’; w;, 1)

. 2
— Perform a gradient descent step (w.r.t. w) towards (yi — Q(s,a; wi))

Added delay breaks correlations between Q-network and target.

Avoids oscillations by having fixed targets.
(Note: We periodically update the target Q-network by copying the weights w— < w;.)

Reduces chance of divergence.

Image: Christopher Mutschler, Reinforcement Learning, 2025

48

DQAN: How it works

action (a;)
[ENV]

State (s;)

Action (a;)

Reward (1)

Next State (s¢44)

’-.--______.-_____________-______—___-______—_-_-__-____-__-_
’/ a; = € —argmax, Q (s, a;w)
‘ A ;
I n
i :
1
I two passes: 5;,5;,1 -
1 i
! %5
| of
I 51,041,711, 52
1 S2,03,72,83 3 Q(s,-, a;w) !
: §3,03,73, 54 2 Q(sisr,a;w) 2
I ©
1 3
1
1
I b L 4
1
\ N - 2
\ DQNV0.2 r={r+ Yy max QCs,,q, a;w) = 0Gs,, ;|
\ A .
. 2 1

Image: Christopher Mutschler, Reinforcement Learning, 2025

DQAN: How it works

action (a;)
ENV] ‘

State (s;)
Action (a;)

Reward (1)

Next State (s¢44)

Sl, al, T‘l-, 32
Sp,02,T2,53
S3,0d3,73, 54

evaluation network

= target network

\update w

a, = € — argmax_ Q (S;, a; w;)

T

Copy every
k timesteps

= | Q(sisp,apw) 2

é[:sia a; w;) 1

\

-
-

L

"

2
L= [r:- Fymax QG a;w) —Q(s, a; w[-)]
a &A , .

Image: Christopher Mutschler, Reinforcement Learning, 2025

50

DQAN: How it works

= How does it work?
= A bag of tricks for stabilizing learning:

Apply reward clipping:
Problem: Large rewards result in large variances in Q-values.
Different games have different reward values.

Oscillations and divergence during learing.
Solution: Clip the rewards (and loss terms) to a range [—1.0, 1.0].

Avoids oscillations by normalizing rewards when training for multiple games.

Prevents Q-values from becoming too large.

Image: Christopher Mutschler, Reinforcement Learning, 2025

91

Extensions; Double DQN

= DQN overestimates Q-values due to using the same network for action
selection and evaluation.

Yy =1 ’TII?K Q(SHh EII;E"_)

= Double DQN separates these roles:

yPDIﬂJlE — 7y | TQ(SL—I'.- arg IIlE}KQ(S;Ll,_El/f;@j 9_)
\ E il — "_;p
= Online network (0) selects; target network (67) evaluates.

= Reduces bias, giving more stable and accurate estimates.

To learn more:

A Van Hasselt, Hado, Arthur Guez, and David Silver. "Deep
é reinforcement learning with double q-learning." Proceedings of 5 2

the AAAI conference on artificial intelligence. Vol. 30. No. 1. 2016. Value Function ApprOXImatlon

Extensions: Prioritized Experience Replay

= Uniform replay wastes updates on uninformative samples.
» Prioritized Replay samples experiences by TD error magnitude §; :

P(l)0C|5l|a EVJ
o C . .-"J".——ib
= Focuses on transitions the agent predicts poorly. (5o _—
* |mportance sampling corrects bias — faster, smarter learning.
To learn more: —— uniform —— rank-based —— proportional uniform DON

A Schaul, Tom, et al. "Prioritized
experience replay." arXiv reprint . . .
é ar>'<°iv:1511_05952”(23,’15)_ prep Value Function Approximation

Extensions: Dueling DGN

= DQN learns Q-values for all actions — even when most don’t matter.
= Dueling DQN splits Q into value and advantage streams:

Q(s,a) = V(s) + (A(s,a) mzﬂ(ﬁaﬂ’))

i

To learn more:

[\ Wang, Ziyu, et al. "Dueling network architectures for deep
é reinforcement learning." International conference on machine

learning. PMLR, 2016. Value Function Approximation

94

Extensions:; Rainbow DQN

= Combines the best ideas from
earlier variants:

Double DQN - reduces overestimation
Prioritized Replay — smarter sampling
Dueling Net — efficient value learning

1
2
3
4. Multi-step Returns — faster credit assignment
9. Noisy Nets — exploration via parameter noise
6

Distributional RL — models return distribution

= Unified, high-performing DQN
achieving state-of-the-art results.

To learn more:

A Hessel, Matteo, et al. "Rainbow: Combining improvements in
é deep reinforcement learning." Proceedings of the AAAI

conference on artificial intelligence. Vol. 32. No. 1. 2018.

Median human-normalized score

200%

100%

0%

Value Function Approximation

DQON
DDQN
— Prioritized DDQN

Dueling DDQN /\/\
B A3C

Distributional DQN Ayr
Noisy DQN

Rainbow [\/\f‘

01

| |
7 44 100 200
Millions of frames

95

Summary

= Tabular methods don't scale. State spaces are too large, generalization
is impossible.

= Function approximation, especially with deep learning, enables RL to
tackle real-world problems with complex, high-dimensional state
spaces.

Value Function Approximation 56

	Slide 1: Value Function Approximation
	Slide 2: Contents
	Slide 3: Motivation
	Slide 4: Our RL Journey So Far
	Slide 5: Motivation: Problems with Tabular Learning
	Slide 6: Motivation: Problems with Tabular Learning
	Slide 7: Motivation: From Table to Function
	Slide 8: Motivation: From Table to Function
	Slide 9: Motivation: From Table to Function
	Slide 10: Motivation: From Table to Function
	Slide 11: Motivation: From Table to Function
	Slide 12: Key Ideas
	Slide 13: Algorithm for State Value Estimation
	Slide 14: Formal Problem Setup
	Slide 15: Objective Function
	Slide 16: Algorithms for Prediction
	Slide 17: Algorithms for Control
	Slide 18: Linear Value Function Approximation
	Slide 19: Linear Value Function Approximation
	Slide 20: Linear Value Function Approximation
	Slide 21: Linear Value Function Approximation
	Slide 22: Linear Value Function Approximation
	Slide 23: Linear Value Function Approximation
	Slide 24: Linear Value Function Approximation
	Slide 25: Linear Value Function Approximation
	Slide 26: Linear Value Function Approximation
	Slide 27: Linear Value Function Approximation
	Slide 28: Linear Value Function Approximation
	Slide 29: Non-linear Value Function Approximation
	Slide 30: Non-linear Value Function Approximation
	Slide 31: Non-linear Value Function Approximation
	Slide 32: Non-linear Value Function Approximation
	Slide 33: Deep Q-Network (DQN)
	Slide 34: DQN
	Slide 35: DQN
	Slide 36: DQN
	Slide 37: DQN
	Slide 38: DQN
	Slide 39: DQN
	Slide 40: DQN
	Slide 41: DQN: How it works
	Slide 42: DQN: How it works
	Slide 43: DQN: How it works
	Slide 44: DQN: How it works
	Slide 45: DQN: How it works
	Slide 46: DQN: How it works
	Slide 47: DQN: How it works
	Slide 48: DQN: How it works
	Slide 49: DQN: How it works
	Slide 50: DQN: How it works
	Slide 51: DQN: How it works
	Slide 52: Extensions: Double DQN
	Slide 53: Extensions: Prioritized Experience Replay
	Slide 54: Extensions: Dueling DQN
	Slide 55: Extensions: Rainbow DQN
	Slide 56: Summary

