Learning from Demonstrations

Iftekharul Islam

Contents

Motivation

Behavior Cloning Inverse RL

Learning from Demonstrations

Combining
Behavior Cloning
and RL

Motivation

Learning from Rewards (Reinforcement Learning)

Action

Agent Environment

= Goal: Learn to choose actions that maximize agent’s rewards
S1,A1,71,S2,02,T9,...,5,, Ay, Ty, = T (A|S)

This becomes ineffective when “experience” is

expensive (e.g., slow action, safety concerns)

Learning from Demonstrations

Learning from Demonstrations (Imitation Learning)

Action

Agent Environment

= Goal: Learn to choose actions that imitate an expert’s policy
S1,a1,S2,Q5, ...,S,, A, = 1 (Als)

Learning from Demonstrations

Learning from Demonstrations (Imitation Learning)

= Useful when it’s difficult to specify reward for desired behavior or
desired policy.

= For example, driving has many desired features: time and speed to
reach goal, comfort, traffic rules, social conventions, etc.

= |t’s difficult to design a numerical reward to encode all these features
without producing unexpected behaviors.

Learning from Demonstrations 6

Beyond Learning from Rewards

» |Learning from rewards
 effective when “experience” is cheap

 ineffective when “experience” is expensive (e.g., slow action, safety
concerns) since RL has high sample complexity

» |Learning from demonstrations
« do not need reward to begin with
 learn from expert’s demonstrations

Learning from Demonstrations 7

Behavior Cloning

Behavior Cloning

= Goal: mimic (but not overfit) the expert’s policy by applying supervised
learning to expert’s demonstrations.

= Does not work in theory due to covariate shift, i.e., training distribution #
test distribution.

= Essentially, we are addressing non-i.i.d. task using method (i.e., supervised
learning) based on i.i.d. assumption.

— training trajectory
— Ty expected trajectory

Image: Sergey Levine, CS 285 Deep RL 9

Supervised Learning vs. Behavior Cloning

= Error of supervised learning: O(eT).
= Error of behavior cloning: 0(eT?).
* ¢ is learning error, T is task horizon.

Learning from Demonstrations

10

Case Study I: Autonomous Driving

= ALVINN: Autonomous Land Vehicle In a Neural Network (1989)

t

30 Output
. Units

| 30x32 Video
1 Input Retina

Learning from Demonstrations

1

Case Study I: Autonomous Driving

Recorded

steering

Desired steering command

wheel angle | Adjust for shift
and rotation
Network
steering Y
_| Random shift o command -
[Center cameraJ—; . > CNN 4><
Right camera f
. Error

weight adjustment

Back propagation |

Bojarski et al. “16, NVIDIA

12

Case Study II: Conversational Agents

Encoder: state s

| fine
(-OH %A@
(I

How are you domg ?

v

Decoder. action a
Objective: max Pr(a|s) =[], Pr(a;|la;_4, ..., a4, s)
a

C(ﬂtext c (Message m Gehiérated Response r

1 noone can help this time its just i need a support 53@1 ivel] im here to support you. whenever yﬂ t-};‘ank you, i appMj
(‘ eed me.

2 nothih much, and how’s the book?! its good but i’m only like halfway through that’s good! i have the book but i’'m
cuz i don’t feel like reading. i’'m so bormﬁ bored too.

3 ikngw! what have you been up to? nothing really. just enjoying summer and that’s good! nothing much just

working. what about you? listening to music and you?

|maqe: PaQPQl pﬂllr\ﬂr’l’ RC IIUIbUIIIUIIt Lcarning I Tablc SUIdUIII S 5 13

Behavior Cloning in Practice

= Behavior cloning works better if we have many (successful) trajectories
for training since those trajectories are likely to embed error-correction
data.

xpected trajectory

Image: Sergey Levine, CS 285 Deep RL 14

Behavior Cloning in Practice

= Pomerleau (1989): the network must not solely be shown examples of
accurate driving, but also how to recover (i.e. return to the road
center) once a mistake has been made.

Learning from Demonstrations 15

DAgger: Dataset Aggregation

= DAgger: “A Reduction of Imitation Learning and Structured Prediction to
No-Regret Online Learning” by Ross et al, 2011.

* Procedure
»Step 1: train a policy using expert’s data
»Step 2: run the trained policy, collect the “deviate data” (i.e., collecting
observations)

»>Step 3: ask expert to label the “deviate data” (i.e., providing actions)
»>Step 4: aggregate all labelled data and re-train the policy
»>Step 5: go to Step 2 if needed

Learning from Demonstrations 16

DAgger: Dataset Aggregation

= DAgger alleviates covariate shift by making training distribution =~ test
distribution. Thus, the error of DAgger is O(eT).

= Essentially, DAgger achieves O(eT) by converting the notion of i.i.d. data
points of supervised learning to i.i.d. trajectories in online learning.

» |n practice, DAgger can work well using a small humber of iterations and
is widely adopted because of its effectiveness and simplicity.

Learning from Demonstrations 17

DAgger: Dataset Aggregation

Limitations
= Assume we can “reset” the agent to obtain i.i.d. trajectories.

= Need humans to label data
« inefficient (deep learning needs data)

* judgemental errors
« unnatural for humans to provide labels for many tasks (e.g., steering angle
based on an image, joint angles for a robot)

Learning from Demonstrations 18

Cases Where Behavior Cloning Can Fail

= Case 1: non-markovian behavior—expert’s action may not only depend
on the current observation (e.g., single frame).

« Solution 1: concatenate multiple observations as one training example
(e.g., DQN on Atari)

pppppppp

Image: Sergey Levine, CS 285 Deep RL 19

Cases Where Behavior Cloning Can Fail

= Case 1: non-markovian behavior—expert’s action may not only depend
on the current observation (e.g., single frame).

* Solution 2: use Transformer or RNN

shared weights

#1717 RNN state

1 = |1 — RNN state

A 4
RNN state

Typically, LSTM cells work better here

Image: Sergey Levine, CS 285 Deep RL 20

Cases Where Behavior Cloning Can Fail

= Case 2: multimodal behavior—when there are
multiple valid actions for one observation

Image: Sergey Levine, CS 285 Deep RL

21

g 5P

Cases Where Behavior Cloning Can Fail T«

= Case 2: multimodal behavior—when there are
multiple valid actions for one observation
while their “average” is bad.

« Solution: output mixture of n Gaussians,
n=number of valid behaviors.

Image: Sergey Levine, CS 285 Deep RL

22

Other Imitation Learning ldeas

= “learning Latent Plans from Play”
= “Learning to Reach Goals via Iterated Supervised Learning”

Learning from Demonstrations

23

Inverse Reinforcement Learning

Imitation Learning

Action

Agent Environment

= Goal: Learn to choose actions that imitate an expert’s policy
S1,a1,S2,Q5, ...,S,, A, = 1 (Als)

Learning from Demonstrations

25

Inverse Reinforcement Learning

Action

Agent Environment

= Goal: Find the reward function that the expert is implicitly optimizing

Learning from Demonstrations

26

Inverse Reinforcement Learning

= Definition
= States: s € S
« (Near) optimal actions: a* € A

. — unknown model

—

Discount factor: 0 <y <1
= discounted: y <1 undiscounted: y =1

» Horizon (i.e., # of time steps): h
= Finite horizon: h € N infinite horizon: h = o

» Goal: find reward model R(s,a) = E[r|s, a] such that

T' = argmaxy Z?:o Y Ex[E[rt|se, at]]

Pascal Poupart, Reinforcement Learning

27

Transfer Learning

= Why recover R when we have n*?

= Think about navigation planning (multiple competing goals: travel time,
distance covered, and fuel efficiency)

« Suppose we know the route (policy) followed by taxi drivers between any
pair of locations in city A

* An autonomous car can follow the same policy in city A
« What about city B?

= |[f we can identify what objectives the taxi drivers were optimizing in

City A, we can apply those same objectives to find appropriate routes in
City B that share similar characteristics.

Learning from Demonstrations 28

General Approach

= Use IRL to learn reward function
= Then use reward function to learn policy
= Advantages:

« No assumption that state-action pairs are i.i.d.

* Transfer reward function to new environments

Learning from Demonstrations

29

Feature Expectation Matching

« Assume that reward model R(s, a) is a linear combination of some

features ¢;(s, a):
R(s,a) = Zw ¢i(s,a) —®;b(s, a)

» Value function: /—/
VT (s) = Zt VtE [R(s¢, a)]

= XtV EL| T¢’(5t
—WTrt]/tE [P (se, ap)l]

B

Pascal Poupart, Reinforcement Learning 30

Feature Expectation Matching

Idea: find weights w that define a reward model R such that the
optimal policy m% (with respect to R based on w) matches expert
feature expectation.

= Let ¢¢ be the feature expectation of expert e

= Let 7% be an optimal policy for(R = wl¢e)
+ Find(w Such tha

Problem: infinitely many w satisfy the feature expectation matching
equality

Pascal Poupart, Reinforcement Learning

31

Maximum Margin IRL

Idea: find unique weights w that lead to the largest margin (value gap)
possible between expert actions and non-expert actions.

» Let ¢p¢ be the feature expectation of expert e

» Let 7% be an optimal policy for R = w'¢e

» Find w* = argmax,, min w’ (¢p¢ — ¢p™)
TT

Pascal Poupart, Reinforcement Learning

32

Maximum Margin IRL Pseudocode

Input: expert trajectories ¢ ~ m¢*P¢"" where ¢ = (s{,a4, S,, a5, ...)
Estimate ¢p¢ from ¢ and learn transition model T from t¢
Initialize policy m at random, sample 7 ~ 7
Estimate ¢ from 7 and initialize ® = {¢}
Repeat
Compute weights that maximize margin
w' = argmax{) margin s.t. margin < w'(¢p, — Pp) V¢ € ®

wi ||w||2=1
Compute optimal policy for w” :
solveMDP(T,R,y, h) where R(s,a) = (W) ¢
Sample 7 ~ 7%, estimate ¢ from 7 and update ® « ® U {¢p*}
Until margin <e
Return w* and m*

|

Pascal Poupart, Reinforcement Learning

33

Further Reading (Some Seminal Papers)

» “Classic IRL”

« Maximum Entropy Inverse Reinforcement Learning
 Hierarchical Imitation and Reinforcement Learning

= “Deep IRL”
 Guided cost learning: Deep inverse optimal control via policy optimization
Generative Adversarial Imitation Learning
Maximum entropy deep inverse reinforcement learning
One-Shot Imitation Learning
Learning Robust Rewards With Adversarial Inverse Reinforcement Learning

Learning from Demonstrations

36

Combining Behavior Cloning and RL

Behavior Cloning and RL

= Behavior cloning
* Pros
» use supervised learning, simple and stable
» Cons
» needs demonstrations
» covariate shift
» can’t outperform demonstrations

= Reinforcement learning
* Pros
» potential superhuman performance
« Cons
» needs reward function
» needs to balance exploration and exploitation
> potentially non-convergent

Learning from Demonstrations

38

Behavior Cloning and RL

= |f we have both demonstrations and rewards, can we get the best of
both approaches?

* |dea: initialize with behavior cloning, then finetune with RL.

» Step 1: collect demonstration data {(s,a)}y

» Step 2: apply behavior cloning on {(s, a)}y and learn
mo(als).

» Step 3: run my(a|s) to collect experience

» Step 4: improve my(als) using RL

= Success example: “Learning to select and generalize striking movements
in robot table tennis” by Mulling et al., 2013.

Learning from Demonstrations 39

Off-policy RL

» The procedure introduced in the last slide represents on-policy learning.
= Off-policy RL can use data from arbitrary policies.

= Approach: use demonstrate data as off-policy samples, thus they are
never forgotten.

= Available method: Q-learning, off-policy policy gradient, ...

Learning from Demonstrations 40

Q-learning with Demonstrations

= Recall in DQN we have experience replay where we keep a buffer of
experience collected so far and sample from it to update our policy.

= Approach: feed expert demonstrations to the replay buffer and run
the algorithm as usual.

= Success example: “Leveraging demonstrations for deep reinforcement
learning on robotics problems with sparse rewards” by Vecerik et al.,
2017.

Learning from Demonstrations 41

Hybrid Loss Function

= Hybrid objective: Loss = behavior cloning objective +®RL objective
= Similar to off-policy approaches, ensure the use of demonstrations.

= Examples

« “Learning complex dexterous manipulation with deep reinforcement
learning and demonstrations” by Rajeswaran et al., 2017.

 “Deep g-learning from demonstrations” by Hester et al., 2018.

= |ssues: need to choose A carefully and the algorithm becomes task-
dependent especially in deciding which demonstrations to use.

Learning from Demonstrations 42

Summary

= LfD is used when rewards are hard to define or RL's trial-and-error is
unsafe/expensive.

= Behavioral Cloning (BC): Simply mimics expert. Suffers from Covariate
Shift (compounding error), which can be fixed by DAgger (iterative
expert labeling).

= |nverse RL (IRL): Recovers the expert's hidden reward function (“why").
Its main advantage over BC is Transfer Learning—the reward is general,
the policy is not.

Learning from Demonstrations 43

	Slide 1: Learning from Demonstrations
	Slide 2: Contents
	Slide 3: Motivation
	Slide 4: Learning from Rewards (Reinforcement Learning)
	Slide 5: Learning from Demonstrations (Imitation Learning)
	Slide 6: Learning from Demonstrations (Imitation Learning)
	Slide 7: Beyond Learning from Rewards
	Slide 8: Behavior Cloning
	Slide 9: Behavior Cloning
	Slide 10: Supervised Learning vs. Behavior Cloning
	Slide 11: Case Study I: Autonomous Driving
	Slide 12: Case Study I: Autonomous Driving
	Slide 13: Case Study II: Conversational Agents
	Slide 14: Behavior Cloning in Practice
	Slide 15: Behavior Cloning in Practice
	Slide 16: DAgger: Dataset Aggregation
	Slide 17: DAgger: Dataset Aggregation
	Slide 18: DAgger: Dataset Aggregation
	Slide 19: Cases Where Behavior Cloning Can Fail
	Slide 20: Cases Where Behavior Cloning Can Fail
	Slide 21: Cases Where Behavior Cloning Can Fail
	Slide 22: Cases Where Behavior Cloning Can Fail
	Slide 23: Other Imitation Learning Ideas
	Slide 24: Inverse Reinforcement Learning
	Slide 25: Imitation Learning
	Slide 26: Inverse Reinforcement Learning
	Slide 27: Inverse Reinforcement Learning
	Slide 28: Transfer Learning
	Slide 29: General Approach
	Slide 30: Feature Expectation Matching
	Slide 31: Feature Expectation Matching
	Slide 32: Maximum Margin IRL
	Slide 33: Maximum Margin IRL Pseudocode
	Slide 36: Further Reading (Some Seminal Papers)
	Slide 37: Combining Behavior Cloning and RL
	Slide 38: Behavior Cloning and RL
	Slide 39: Behavior Cloning and RL
	Slide 40: Off-policy RL
	Slide 41: Q-learning with Demonstrations
	Slide 42: Hybrid Loss Function
	Slide 43: Summary

